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Abstract

Shakedown analysis with the discretization in kinematically admissible finite elements and the use of von Mises yield

criterion is considered in this paper. The shakedown load multiplier formulated by kinematic theorem under nonlinear

form is proved to be the primal form of the shakedown load multiplier formulated by static theorem. Based on this

duality, an efficient dual algorithm for shakedown analysis of structures is established and implemented connecting with

finite element discretization technique. Some numerical examples are presented.
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1. Introduction

From both physical and mathematical point of views, the duality that connects the upper and lower

bound theorems is an attractive property of shakedown theory. The problem of duality in shakedown has

been addressed in literature since longtime.

Maier (1973) showed that by using mathematical programming method, the precise duality of static and
kinematic approaches could be obtained. Studies on duality were also carried out by De Saxc�ee (1986),

Morelle (1989), Kamenjarzh and Weichert (1992), etc. Kamenjarzh and Weichert used a convex-analysis

approach to establish a dual kinematic safety factor based on Melan�s theorem. The duality was restricted

to the case of spherical yield surfaces that can be found when applying von Mises yield condition to some

thin-walled structures. The dual theorem was then generalized in Kamenjarzh and Merzljakov (1994a) to

cover a wider class of yield surfaces such as cylindrical yield surfaces as well as those with different yield

stresses at tension and compression. The theory was later modified to give an explicit kinematic formulation

in Kamenjarzh and Merzljakov (1994b). In their work, duality conditions were presented and a discretized
version of the dual function was considered by mean of finite elements. By considering the plastic shake-

down analysis, Polizzotto (1993) also showed that dualization between static and kinematic formulations is
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straightforward when the set of variable loads is a polyhedron. Extended theory of duality for convex

nonpolyhedral load domain can be found in the work of Silveira and Zouain (1997). Using the kinematic

formulation for incremental collapse, they obtained a static dual form. Further studies concerning dual

bounds of shakedown loads were carried out by Zouain and Silveira (1999).
However, the duality between the discretized forms of upper and lower formulations by using kine-

matically admissible finite elements and von Mises criterion has not yet been established, despite the fact

that such dual forms are widely used in practical optimization computations. On the other hand, the duality

in discretized forms has never been practically employed in shakedown analysis to improve numerical

calculations.

In this work, both upper and lower bound formulations of the shakedown load multiplier are discretized

by kinematically admissible finite elements, and von Mises yield criterion are adopted. The two discretized

forms are shown to be primal and dual, respectively. Based on this duality, an efficient algorithm for
shakedown analysis is constructed. As will be shown hereafter, by using an appropriate finite element mesh

the shakedown load calculation in this work leads to accurate solutions without strict bounding property.
2. Shakedown analysis as a problem of nonlinear programming

2.1. Kinematic formulation

Consider a structure made of elastic–perfectly plastic material and subjected to n time-dependent loads

P
0

k ðtÞ, each of these loads may vary independently within a given range:
P
0

kðtÞ 2 I0k ¼ ½P�
k ; P

þ
k � ¼ ½l�

k ; l
þ
k �P 0

k ; k ¼ 1; n ð2:1Þ
where l�
k ; l

þ
k are, respectively, the lower and upper bounds of kth nominal load P 0

k . They form a convex

polyhedral domain D of n dimensions with 2n vertices in load space. This load domain can be represented in

the following linear form (Konig, 1987):
P ðtÞ ¼
Xn
k¼1

lkðtÞP 0
k ð2:2Þ
where
l�
k 6 lkðtÞ6 lþ

k ; k ¼ 1; n ð2:3Þ
In many cases, it is useful to describe this load domain in stress space. To this end, we use here the notion of

a fictitious elastic response of the structure under the same loading. The fictitious elastic stress rE
ijðx; tÞ is

written in a form similar to (2.2):
rE
ijðx; tÞ ¼

Xn
k¼1

lkðtÞrEk
ij ðx; P 0

k Þ ð2:4Þ
where rEk
ij ðx; P 0

k Þ denotes the stress field of the structure when subjected to kth nominal load P 0
k .

Based on the kinematic theorem of Koiter, the upper bound of shakedown load multiplier may be
formulated in the following form:
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aþ ¼ min
X
k2ID

Z
V
Dpð _eekijÞdV ðaÞ

s:t:

Deij ¼
P
k2ID

_eekij ðbÞ

Deij ¼ 1
2

oDui
oxj

þ oDuj
oxi

� �
in V ðcÞ

Dui ¼ 0 on Au ðdÞP
k2ID

R
V rE

ijðx; P 0
k Þ _eekij dV ¼ 1 ðeÞ

8>>>>>>>><>>>>>>>>:
ð2:5Þ
where aþ denotes the upper bound of the shakedown load multiplier; u is the displacement; _eekij is the

corresponding strain rate at load vertex k; Deij is the total plastic strain increment after a loading cycle; ID is

the set of all load vertices and Dpð _eekijÞ denotes the plastic dissipation rate. By using von Mises yield criterion

we have:
Dp ¼ rp
3

2
_eepij _ee

p
ij

� �1=2

ð2:6Þ
where _eepij denotes the deviatoric part of _eepij, and rp is the yield stress of material.

The discretized form of (2.5) by means of the finite element method can be expressed as follows:
aþ ¼ min
Xm
k¼1

XNG

i¼1

ffiffiffi
2

p
wikv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_eeTikD _eeik þ e20

q
ðaÞ

s:t:

Pm
k¼1

_eeik ¼ Biq 8i ¼ 1;NG ðbÞ

Dv _eeik ¼ 0 8i ¼ 1;NG ðcÞPm
k¼1

PNG

i¼1

wi _eeTikr
E
ik ¼ 1 ðdÞ

8>>>>><>>>>>:
ð2:7Þ
where kv ¼ rp=
ffiffiffi
3

p
; _eeik and rE

ik denote, respectively, the vector of deformation rate and the vector of the

fictitious elastic stress at Gauss point i and load vertex k; q is the nodal displacement vector; Bi is the strain

matrix; m ¼ 2n; NG denotes the total number of Gauss points of the whole structure with integration

weight wi at Gauss point i; e0 is a small value of regularization.

We note that the shakedown load multiplier aþ in Eq. (2.7) is an approximation of aþ in Eq. (2.5). In

order to obtain aþ as an upper bound of the shakedown load multiplier, the following conditions must be

fulfilled:

1. The number of Gauss points must be sufficient so that: the volume integrations (2.7.a) and (2.7.d) are

calculated precisely, the numbers of constraints in (2.7.b) and (2.7.c) are sufficient to ensure compatibility

and incompressibility over each element.

2. The fictitious elastic stresses in (2.7) are computed exactly.

Although we may fulfill the first requirement, the fictitious elastic stresses are normally approximations

of the exact values. Therefore, the shakedown load multiplier aþ computed in (2.7) may lose its bounding
characteristic in the strict sense.
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2.2. Static formulation

Based on the static theorem of Melan, the lower bound of shakedown load multiplier can be written as:
a� ¼ max a ðaÞ

s:t:

oj�qqij ¼ 0 in V ðbÞ
�nnj�qqij ¼ 0 on Ar ðcÞ
f ðarE

ijðx; bPPkÞ þ �qqijÞ6 0 8k ¼ 1;m ðdÞ

8>><>>:
ð2:8Þ
Evidently it is reasonable to use statically admissible elements to discretize (2.8). However, as we know,

those elements are not widely used. By using kinematically admissible elements instead, the lower bound of

shakedown load multiplier may be discretized as follows:
a� ¼ max a ðaÞ

s:t:

PNG

i¼1

wiB
T
i qi ¼ BTq ¼ 0 ðbÞ

f ðarE
ik þ qiÞ6 0 8k ¼ 1;m; 8i ¼ 1;NG ðcÞ

8><>: ð2:9Þ
The discretized fictitious elastic stress field rE
ik in this formulation is computed at Gauss points like the

residual stress field qi. Note that the nonlinear mathematical optimization problem (2.9) has
NSC�NGþ 1 variables: the global residual stress q and load multiplier a. Here NSC is the number of

stress components.

Again, we note that the shakedown load multiplier a� of the formulation (2.9) is an approximation of a�

in formulation (2.8). In order to obtain a� as a lower bound of the shakedown load multiplier, the following

conditions must be fulfilled (Stein et al., 1993):

1. The static equilibrium condition (2.8.b) and the static boundary condition (2.8.c) for the residual stress

distribution �qqij are satisfied exactly for all points x in the volume V or on the surface Ar.
2. The fictitious elastic stress field rE

ijðx; bPPkÞ is calculated exactly for all points x in V and for all load verticesbPPk of the given load domain.

3. The yield condition (2.8.d) is satisfied exactly for all points x in V .

Unfortunately we can only have a quasi-equilibrium state (condition (2.9.b)) as well as yield criterion

satisfied at discrete Gauss points of the structure (condition (2.9.c)). Besides, as already noted above, the

fictitious elastic stresses are normally approximations of the exact values. Therefore the shakedown load

multiplier a� obtained by (2.9) has no strict bounding characteristic.
If the von Mises yield criterion is used, the requirement (2.9.c) represents a system of NG nonlinear

inequality constraints. These nonlinear constraints are the major obstacle in implementing the von Mises

yield criterion in shakedown analysis. To overcome this difficulty, Tresca or linearized von Mises yield

criterion may be used. In order to avoid the use of linearization, Stein et al. (1993) proposed a sequential

quadratic procedure with a basic-reduction technique. This technique permits us to consider only some

small number of residual stress vectors as active variables at a time. Based on this set of active variables, the

global residual stress vector is improved, a new set of active variables is sought for and the procedure

continues until a solution is found.
We can also overcome the difficulty stemming from the nonlinear constraints of (2.9) if we do not directly

maximize the load multiplier, but consider it as a complementary problem of the kinematic formulation
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(2.7). In order to do so, the duality between formulations (2.7) and (2.9) will be discussed in details in the

following section.
3. The duality between kinematic and static formulations

By restricting ourselves to polyhedral load domains, we show in this section that the static formulation

(2.9) may be viewed as the dual form of its kinematic counterpart (2.7). For the sake of simplicity, let us

rewrite the formulation (2.7) in a simpler form by setting:

• The new strain rate vector eik (the dot mark denoting time derivative is omitted for simplicity):
eik

tik

bBB
¼ wiD
1=2 _eeik ð3:1Þ
• The new fictitious elastic stress field tik:
¼ D�1=2rE
ik ð3:2Þ
• The new deformation matrix bBBi:
i ¼ wiD
1=2Bi ð3:3Þ
In the above definition D1=2 and D�1=2 are a symmetric matrices such that:
D�1=2 ¼ ðD1=2Þ�1
and D ¼ D1=2D1=2 ð3:4Þ
With these definitions, the objective function of (2.7) becomes:
Xm
k¼1

XNG

i¼1

ffiffiffi
2

p
wikv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_eeTikD _eeik þ e20

q
¼

ffiffiffi
2

p
kv
Xm
k¼1

XNG

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ e2

q
ð3:5Þ
In formulation (3.5), e2 is a small positive number that is suitably chosen to avoid the singularity of the

objective function. By substituting (3.1)–(3.5) into (2.7) one obtains a simplified formulation:
aþ ¼ min
XNG

i¼1

Xm
k¼1

ffiffiffi
2

p
kv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTikeik þ e2

q
ðaÞ

s:t:

Pm
k¼1

eik � bBBiq ¼ 0 8i ¼ 1;NG ðbÞ

1
3
Dveik ¼ 0 8i ¼ 1;NG; 8k ¼ 1;m ðcÞPNG

i¼1

Pm
k¼1

eTiktik � 1 ¼ 0 ðdÞ

8>>>>>><>>>>>>:
ð3:6Þ
where factor (1/3) is added in (3.6.c) for a technical reason.

As it is well known, limit analysis may be considered as a special case of shakedown analysis. Andersen

et al. (2000), while considering a problem of minimizing a sum of Euclidean norms, found that in the case of
limit analysis there exists a dual form for (3.6). A generalization of this dual form is presented hereafter

through the following propositions:
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Proposition 1. If there exists a finite solution aþ for the kinematic shakedown load multiplier (3.6) with e2 ¼ 0,

then aþ has its dual form as:
a� ¼ max
cik ;bi ;a

a

s:t:

kcik þ bi þ tikak6
ffiffiffi
2

p
kv ðaÞPNG

i¼1

bBBT
i bik ¼ 0 ðbÞ

8><>:
ð3:7Þ
where: k:k denotes Euclidean vector norm.

Proof. By setting e2 ¼ 0, let us write the Lagrange dual function of (3.6) as:
FL ¼
XNG

i¼1

Xm
k¼1

ffiffiffi
2

p
kv

ffiffiffiffiffiffiffiffiffiffi
eTikeik

q� �(
�
Xm
k¼1

1

3
ðcT

ikDveikÞ � bT
i

Xm
k¼1

eik

 
� bBBiq

!)
� a

XNG

i¼1

Xm
k¼1

eTiktik

 
� 1

!
ð3:8Þ
where cik, bi, a are Lagrange multipliers. Note that cik, bi are vectors at Gauss point i for each load vertex k
while a is merely a scalar.

The dual problem of (3.6) is:
max
cik ;bi ;a

ðmin
eik;q

FLÞ ð3:9Þ
Because a finite solution for (3.6) exists, the constraint system (3.6.b–d) is affine and the objective function is

convex, then the duality theorem states that there exists no duality gap between primal and dual solutions:
min
hðeik ;qÞ¼0

XNG

i¼1

Xm
k¼1

ffiffiffi
2

p
kv

ffiffiffiffiffiffiffiffiffiffi
eTikeik

q
¼ max

cik ;bi ;a
ðmin
eik ;q

FLÞ ð3:10Þ
where hðeik; qÞ ¼ 0 stands for linear constraint system (3.6.b–d).

The Lagrange function (3.8) may be written in another form:
FL ¼
XNG

i¼1

Xm
k¼1

ffiffiffi
2

p
kveikffiffiffiffiffiffiffiffiffiffi
eTikeik

p � cik � bi � tika

!T

eik þ
XNG

i¼1

bT
i
bBBiqþ a ð3:11Þ
In formulation (3.11) we adopt the convention that if the vector norm of the strain rate keikk is equal to zero

then:
ffiffi
2

p
kveTikffiffiffiffiffiffiffi
eTikeik

p eik ¼ 0.

Due to the existence of a dual solution a� with zero duality gap, it is required that for any solution set of

Lagrange multipliers ðcik; bi; aÞ the function mineik ;q FL must have a finite value. To this end, the following

system must be satisfied:
ffiffi
2

p
kveikffiffiffiffiffiffiffi
eTikeik

p � cik � bi � tika

� �T

eik P 0 8eik ðaÞPNG

i¼1

bT
i
bBBiq ¼ 0 8q ðbÞ

8>><>>: ð3:12Þ
otherwise we always have:
min
eik ;q

FL ! �1 ð3:13Þ
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According to (3.13), the function of mineik ;q FL is bounded from below:
min
eik ;q

FL P a ð3:14Þ
It reaches a when, for example, all strain rates and displacements are equal to zero. This fact leads to the

conclusion:
min
eik ;q

FL ¼ a ð3:15Þ
The condition (3.12.b) is equivalent to:
XNG

i¼1

BT
i bi ¼ 0 ð3:16Þ
We can also point out that the condition (3.12.a) is equivalent to the restriction on only multipliers cik, bi, a:
kcik þ bi þ tikak6
ffiffiffi
2

p
kv 8i; k ð3:17Þ
Equalities (3.15), (3.16) and inequality (3.17) conclude our proof. h

Because the formulations (3.6) and (3.7) are primal and dual problems, it is also useful to present this

primal–dual forms as a set of stationary conditions as follows:
ffiffi
2

p
kveikffiffiffiffiffiffiffi
eTikeik

p � ðcik þ bi þ atikÞ ¼ 0 ðaÞ

Dveik ¼ 0 ðbÞPm
k¼1

eik � B̂Biq ¼ 0 ðcÞ

PNG

i¼1

B̂BT
i bi ¼ 0 ðdÞ

PNG

i¼1

Pm
k¼1

eTiktik � 1 ¼ 0 ðeÞ

ð3:18Þ
Further more, it is possible to show that the Lagrange multiplier cik in the formulation (3.7) can be

eliminated and we have:
a� ¼ max
bi;a

a ðaÞ

s:t:

f ðD1=2bi þ arE
ijÞ6 0 ðbÞPNG

i¼1

wiB
T
i D

1=2bi ¼ 0 ðcÞ

8><>:
ð3:19Þ
Obviously (3.19) is a discretized form of the shakedown load multiplier formulated by the Melan theorem.

In formulation (3.19) the vector D1=2bi can be interpreted as the stress vector of a time-independent residual

stress field: the value of this vector is calculated at each Gauss point, independently of load vertices or, in

other word, independently of time.

Proposition 2. If there exists a finite solution aþ for the kinematic shakedown load multiplier (3.6) with e2 ¼ 0

and if the incompressibility is automatically satisfied, then the kinematic formulation has its dual form as the

static one formulated by the Melan theorem:
min
hðeik ;qÞ¼0

XNG

i¼1

Xm
k¼1

ffiffiffi
2

p
kv

ffiffiffiffiffiffiffiffiffiffi
eTikeik

q
¼ max

BT�qq¼0

f ða�rrEikþ�qqikÞ6 0

� a ð3:20Þ
where f is the von Mises yield function.
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This proposition shows that the shakedown load multipliers formulated by static ða�Þ and kinematic

ðaþÞ theorems are actually the same. As kinematically admissible finite elements are adopted in the present

work, both solutions of aþ and a� may represent generally an upper bound approximation of the exact

solution, although this is not in the strict sense.
Based on the above discussion on duality, a dual algorithm has been developed. The objective is to

obtain simultaneously both primal and dual values by solving the system of stationary conditions (3.18).

Unfortunately, solving directly this system is a difficult task, because it results in a system of equations

much bigger than that in the case of elastic computation. The resulted system thus requires large amount of

computer memory as well as computational effort to solve. In order to keep our problem size as small as

possible, we use penalty method to handle the incompressibility and compatibility conditions (3.18.b and c)

and use Lagrange multipliers as intermediate variables. For the details of the developed algorithm, we

invite readers to refer to Vu et al. (2001, submitted for publication).
As noted before, limit analysis may be considered as a special case of shakedown when the structure is

loaded with only one monotonic load, i.e. ½l0; l0�P0. The developed algorithm is thus expected to give

accurate solutions in limit analysis. Numerical examples presented hereafter shows that such requirement is

fairly satisfied.
4. Numerical examples

In our first example, a square plate with a central circular hole is examined. The plate is subjected to two

loads p1 and p2 varying independently. Plane stress state is considered and von Mises yield criterion is used.

Due to the symmetric property of the plate, only one fourth of the plate is modeled by quadrilateral 8-node

elements. Firstly, numerical investigation carried out in the case of R=L ¼ 0:5, with different meshes (Fig.

1b). The results show that when the mesh is refined, both aþ and a� decrease and tend toward a convergent
solution. While the obtained aþ represents a real upper bound using a FE mesh with finite DOFs, the

corresponding a� is obviously not a real lower bound. This is due to the fact that we are using a kinematic
Fig. 1. Plate with a central hole subjected to tension: (a) FEM model and (b) shakedown load multipliers vs. number of DOFs.
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finite element mesh (but a static one). It has been shown by the dual theorems presented in Section 3 that aþ

and a� have a same converge solution. They converge to the exact solution only with appropriate finite

element mesh.
Fig. 2. Limit and shakedown analyses (R=L ¼ 0:2, p1 6¼ 0, p2 ¼ 0).

Fig. 3. Pipe junction: (a) FEM mesh and (b) limit and shakedown analysis.
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The analytical solution of limit load is known to be exact for p1 6¼ 0, p2 ¼ 0 in the case of

0 < R=L6 0:204, since in this range the lower bound and upper bound coincide: a ¼ plim=r0 ¼ ð1� R=LÞ
where r0 is the yield stress, Gaydon and McCrum (1954). Taking R=L ¼ 0:2 as example, the exact limit load

multiplier is a ¼ 0:8. Our corresponding numerical solutions obtained with 800 elements are a� ¼ 0:79924
and aþ ¼ 0:80038. In shakedown analysis, the shakedown load multiplier for alternating plasticity limit

may be estimated as aalter ¼ plim=r0 ¼ 0:59947 based on an elastic calculation. Our dual algorithm gives

a� ¼ 0:59947 and aþ ¼ 0:59949. Only few iterations are required to obtain the solutions (Fig. 2), showing

excellent precision and efficiency of the developed algorithm.

In the second example, we consider a pipe junction subjected to internal pressure p varying within the

range ½0; p0�. The problem was examined by Staat and Heitzer (1997) who used 125 solid 27-node hexa-

hedron elements for this pipe junction. In our analysis, only one fourth of the structure is modeled because

of its symmetric property. The FE mesh presented in Fig. 3(a) contains 720 solid 20-node hexahedron
elements. The limit and shakedown analysis results are depicted in Fig. 3(b) where the rapid convergence of

solutions may be observed.
5. Conclusions

Using kinematically admissible finite elements and von Mises yield criterion, the duality presented in this

paper shows that shakedown load multipliers obtained by Melan and Koiter theorems have the same

convergence value which has no strict bounding property. However, in many practical calculations, the

convergence solutions may represent generally an upper bound approximation of the exact solution as we
are using kinematically admissible finite elements. On the other hand, during the iteration process with a

given FE mesh, the solutions ðaþ; a�Þ remain their bound characteristic with respect to the final conver-

gence solution. Based on the obtained dual formulations of shakedown load multiplier, a new dual algo-

rithm for shakedown analysis of structures is developed. Numerical examples show high calculating

efficiency of the algorithm: both primal ðaþÞ and dual ða�Þ values converge rapidly to the accurate solution

when an appropriate FE mesh is used. An other paper presented by the same authors (Vu et al., submitted

for publication) will discuss mainly the calculating technique of shakedown analysis and will describe the

details of the developed algorithm.
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